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I. INTRODUC no",

The original Lax Equivalence Theorem. Lax and Richtmyer 141. Morton
and Richtmyer 161. was subsequently generalised in various directions. For
instance. Thompson. 171. extended the result to inhomogeneous equations in
which the inhomogeneous term.;: is piecewise continuous on 10. TI. the time
interval of interest. Also. in Thompson's paper and in Ansorge Ill. semi
linear initial value problems are treated, Recently there has been work done
on equipping the stability estimates. etc. with orders (powers of the time step
jl). see. e.g., Butzer and Weis 121. Butzer 1'/ al. 131.

This paper extends the result to the case of inhomogeneous terms which
are merely Lebesgue square integrable on 10. TI. The motivation for this
extension comes from the use of finite difference approximations in the study
of optimal control of systems governed by partial differential equations. To
guarantee the existence of optimal solutions one has to work in L' spaces.
Lions 151,

2. THE DIFFERE"'CT ApPROXI~Ii\T1()N

[n this paper it is shown that under the conditions of the Lax Equivalence
Theorem (i.e.. that jC(JI)} is a consistent and stable approximation to a
well·posed initial value problem). the solution of the difference equations
converges to the exact solution of the differential equation. when the
inhomogeneous term. I belongs to B. = L '(10. T[: X). the (Bochner) space
of functions g(.). with values in the Banach space X and ii g(t )1' squarc
integrable on [0. TI. The case of f continuous on 10. TI is proved in
Thompson 171. and will be assumed here.

The differential equation IS

dx
dl
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where X is a Banach space and fEB 2' A is a closed, densely defined linear
operator on X, generating a strongly continuous semi-group E(t). If f is
continuous on 10, TI, i.e.,fE C(la, T!;X), the difference equations take the
form

However, iff is not continuous but belongs to B 2 , Ilf(l)11 may be unbounded
on a set of measure zero in 10, TI. SO we take the difference equations in the
form

X
kfl =C(J;t)xk +J;ffk.

where fk is defined by

The generalised solution of the differential equation (I) is

.1

x(t) = E(t)xo + I E(t - s)f(s) ds.
'0

and the solution of the difference equations is

f1 - I

xn=cn(J.t)xo+Jt \' (C(J·t)r-k-'jk..I .I _ J

k - 0

(2)

(3 )

The assumptions of consistency and stability for the approximation jC(J;t)}
imply that Cn)(J;t)xo--+E(t)xo as J;t--+a and njJ;t->t. So it only needs to
be shown that

n-I

Jjt \ ' (C(J;t))n-k 'J'k
k 0

approximates the solution of (1) when X o = a. for fEB 2'

Make the definitions

n-l

(GJ)(nL1;t) = L1 j t ~ (C(L1 j t))" k- 'j(kL1 j t)
k 0

for f E C( Ia. T I; X) and

n -- I

(Gj)(nJ.t)=L1t \' (C(Jt))"-k 'jkI .I J _ .I

k 0

640:33:24
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for fEB I . It is proved in Thompson's paper that (Gj f)(nt1 j l)->x(t) as
,1/ -> 0, nt1/ -> t, where X(l) is the solution of (1), when f is continuous. We
have to show that (GJ)(n t1J)-> x(t) when f belongs to B I ·

3. CONVERGENCE PROOF

Since the initial value problem .\- = Ax is assumed well-posed, there exists
K > 0 such that II E(t)1I (; K for 0 (; t (; T. The approximation is assumed to
be stable so there is a J> 0 such that II C"(t1;1 )11 (; J for 0 (; /J j t (; r.
0(; nL1 j t (; T. Now pick c: > O.

For fEB I there is an f, E C( 10, Tj; X) such that

(4)

since the continuous functions are dense in the L 2 functions. The norm on B!
is defined by

• i \ '/ 2 II 2

Iii lin, = /.1
0

Ilf(!)11 dt \ '

Ilf(t)11 being the norm of f(t) E X. Denote the solution of (I) with f replaced
by J. as X,. Then

.(

x(t)~x,(t)= I E(t-s)(f(s)~J.(s»ds
'0

and by the Schwarz inequality and (4) (noting that J~ II E (t - S )11 2 ds (; K 2 T)

Ilx(1) - x,(I)11 (; K iTllf·- i: lin, (; /;/4.

By assumption the Lax theorem is true for inhomogeneous terms which
are continuous on 10. Tj, when Gj is taken as the approximate solution
operator. So there exists (51 > 0 such that

0< L1;f (; T,

implies

Ilx,(t) -- (GJ: )(nL1 j l)11 (; 0;/4

uniformly in l, 17\. Now from (3)

(5 )
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and since}; is continuous on 10, TI, it is uniformly continuous on 10, Tj, so
there is a (\>0 such that for all s,t in !O,Tj, Is~tl<(j2 implies
II}; (s) ~ f,(t)11 ~ c/4JT. Hence, if L1 j t ~ (j2

11f, (k L1; t) ~ f,k II ~ t;j4JT.

Therefore the norm of

(G j f,)(nL1 j t) - (G j f,)(nL1/)
II ,

= L1;t \ ' (C(L1 j t))" k- 1 if,(kL1;t) ~ f,kf
k ()

is uniformly bounded by c/4.
By the Schwarz inequality for sums,

II(G;f,)(nL1;t) ~ (GJ)(nL1 j t)11

~L1;t \ ,,\,' 11(C(L1
j
t))"'-111 2 !!/2

I, () 1

X ) \ ,I Ilf/ _ f'112(2.
" ()

Again the Schwarz inequality gives (cf. (3))

and thus

11- I I
\' "112 2_ Ilf, -f ~~llf-f,IIR,., () ;

Since for the other term in (6) we have

II 1

\ ' II (C(L1J))1I k 111
2 <J2n.

k ccO

one obtains, noting nL1J ~ T and (4),

(6)
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Now take 0<L1j t<min(r,02) and Il-nL1j11<ol' so that repeated
application of the triangle inequality yields

Ilx(l) - (GJ)(nL1 j l)11

<ilx(l) - x,(t)11 + Ilx,(t) - (G/,)(nL1 j l)!i

+ II(G;f,)(nL1 j t) - (GJJ(nL1j t)11

+ II(G;fJ(nL1j l) - (GJ)(nL1 j l)11 <c.

Since this is true for any f; > 0,

(GJ)(nL1 j t) 4 x(t),

and the Lax theorem is proved for the case of f belonging to L 2([0, TJ; X).
Note that the convergence is uniform in t, since (5) holds uniformly in t.
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